Chemical Constituents from Drypetes littoralis

Mei-Tsu Lin, Lih-Chun Chen, Chien-Kuang Chen, Karin C. S. Chen Liu, and Shoei-Sheng Lee*
School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan, Republic of China

Received December 14, 2000

Abstract

Chemical investigation of Drypetes littoralis yielded three new tricydic diterpenes, drypetenones A, B, and C (1-3), and one new xanthone (4). Spectral analyses and chemical correlations established the structures as 10S-12-hydroxy-11-methoxy-13-methyl podocarpa-1,5,8,11,13-pentaene-3,7-dione, (1), 10S-12-hydroxy-11-methoxy-13-methylpodocarpa-5,8,11,13-tetraene-3,7-dione (2), 10S-12-hydroxy-6,11-dimethoxy-13-methylpodocarpa-1,5,8,11,13-pentaene-3,7-dione (3), and 1-hydroxy-7-hydroxymethyl-6methoxyxanthone (4). Complete ${ }^{13} \mathrm{C}$ NMR assignment of boehmenan D (5) is also made.

Drypetes littoralis (C. B. Rob.) Merr. (Euphorbiaceae), an evergreen tree, is one of three species of Drypetes found in Taiwan. ${ }^{1}$ The chemical constituents of D. hieranensis, one of these three species, have been studied, and some of them have been reported. ${ }^{2}$ The MeOH extract of this species was found to possess activity against Epstein Barr virus DNA polymerase in a preliminary study. ${ }^{3}$ This background prompted us to explore the phytochemistry of D. littoralis, and the results are reported here.

Results and Discussion

An ethanolic extract of the stem of D. littoralis was triturated with $\mathrm{H}_{2} \mathrm{O}$ to give water-soluble and -insoluble fractions. The insoluble fraction was then triturated with 50% aqueous EtOH to yield a soluble fraction, which upon column chromatography resulted in isolation of compounds 1-4.

Compounds 1-3 had UV absorption maxima at 250 and 315 nm , the latter showing significant bathochromic shift under strong alkaline conditions, indicating the presence of phenol ic functions. Their IR spectra displayed absorption for hydroxyl ($3300 \mathrm{~cm}^{-1}$), aromatic ($1500-1600 \mathrm{~cm}^{-1}$), and α, β-unsaturated carbonyl ($1690 \mathrm{~cm}^{-1}$) groups. These were similar to those of podocarpa-5,8,11,13-tetraene-3,7-diones, such as teuvincenone A. ${ }^{4}$

Compound $\mathbf{1}$ had the molecular formula $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{4}$, as deduced from its HREIMS. The olefinic and aromatic regions of its ${ }^{1} \mathrm{H}$ NMR spectrum revealed four signals, two appearing as an AX system at $\delta 6.12$ and $7.73, \mathrm{~J} \mathrm{Ax}=10.2$ Hz , assignable to $\mathrm{H} \alpha$ and $\mathrm{H} \beta$ of an α, β-conjugated carbonyl system. The remaining ${ }^{11} \mathrm{H}$ NMR signals included one MeO- singlet (δ 3.97) and four methyl singlets ($\delta 2.31$, 1.70, 1.55, and 1.38). The arrangement of these substituents was determined by analysis of its NOESY spectrum, which showed the following key NOEs: $\delta 6.12(\mathrm{H}-2) \leftrightarrow$ $\delta 7.73(\mathrm{H}-1) \leftrightarrow \delta 1.70(\mathrm{H}-20) ; \delta 7.73(\mathrm{H}-1) \leftrightarrow \delta 3.97$ (11-OMe) $\leftrightarrow \delta 1.70$ (H-20); $\delta 1.55(\mathrm{H}-19) \leftrightarrow \delta 6.47$ (s, H-6) $\leftrightarrow \delta 1.38(\mathrm{H}-18) \leftrightarrow \delta 1.55(\mathrm{H}-19) ; \delta 7.82(\mathrm{~s}, \mathrm{H}-14) \leftrightarrow \delta 2.31$ (H-15). These data established compound 1 as 12 -hydroxy-11-methoxy-13-methylpodocarpa-1,5,8,11,13-pentaene-3,7dione.

Compound 2 had the molecular formula $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{4}$, as deduced from its HREIMS, two hydrogen atoms more than 1. Comparison of the ${ }^{13} \mathrm{C}$ NMR data with those of 1 revealed that the carbon signals of the α, β-conjugated carbonyl system in $\mathbf{1}$ were replaced by two methylenes ($\delta_{\mathrm{c}} 28.5,33.1$)

[^0]

$1 \mathrm{R}=\mathrm{H}$
$3 \mathrm{R}=\mathrm{OMe}$

4

5
and a nonconjugated carbonyl (δ 213.3) in 2. Except for these differences, the rest of the signals were closely similar, indicating that 2 was a 1,2-dihydrogenated analogue of 1 . This was confirmed by the NOE between H-20 ($\delta 1.42, \mathrm{~s}$) and $\mathrm{H}-1 \beta$ ($\delta 3.08$, ddd, $\mathrm{J}=13.7,6.6,4.4 \mathrm{~Hz}$). An HMBC spectrum of $\mathbf{2}$ displaying a three-bond coupling between $\mathrm{H}-20$ ($\delta 1.42$) and $\mathrm{C}-1(\mathrm{t}, \delta$ 28.5) was also supportive. Hence, 2 was established to be 12-hydroxy-11-methoxy-13-methylpodocarpa-5,8,11,13-tetraene-3,7-dione.
Compound 3 had the molecular formula $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{5}$, as deduced from the HREIMS, an OCH_{2} unit more than that of compound $\mathbf{1}$. Comparison of its ${ }^{1} \mathrm{H}$ NMR spectrum with
that of $\mathbf{1}$ revealed that the $\mathrm{H}-6$ singlet at $\delta 6.47$ in $\mathbf{1}$ was replaced by a MeO singlet (δ 3.87) in 3. The ${ }^{13} \mathrm{C}$ NMR spectrum also reflected this difference by an additional oxygenated signal (s, $\delta 148.2$) and an MeO signal ($\mathrm{q}, \delta 61.0$) instead of an ol efinic methine (d, $\delta 124.3$), suggesting that 3 was 12-hydroxy-6,11-dimethoxy-13-methyl podocarpa-1,5,8,11,13-pentaene-3,7-dione. This proposed structure was confirmed by an NOE between $\mathrm{H}-18$ ($\delta 1.50$), $\mathrm{H}-19$ ($\delta 1.65$), and 6-OMe ($\delta 3.87$).

The stereochemistry at C-10 of compounds $\mathbf{1 - 3}$ was determined by comparison of the specific optical rotation of the catalytic hydrogenation product (6) of $\mathbf{2}$ with data reported for very similar known compounds. NOED studies on 6 suggested a trans junction for rings A and B since there was no enhancement of $\mathrm{H}-5$ upon irradiation at the 10-Me (i.e., H-20) frequency. The trans A/B ring junction and the negative rotation, $[\alpha]^{25} \mathrm{D}-127.0^{\circ}$ (c $1.0, \mathrm{MeOH}$), similar to those for (-)-5R,10S-12-hydroxy-13-methyl-podocarpa-8,11,13-trien-3-one (7), ${ }^{5,6}$ established a 5R,10Sstereochemistry for $\mathbf{6}$. Consequently, 2 possesses the 10Sconfiguration. Compounds $\mathbf{1}$ and $\mathbf{3}$, having the same sign of optical rotation and the same plant origin as 2, are assumed to possess the same stereochemistry at C-10.
Compound $\mathbf{4}$ had the molecular formula $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{5}$, as deduced from the HREIMS, suggesting 10 double bond and ring equivalents. It contained a 1-hydroxyxanthone moiety, as evidenced by characteristic UV spectral data ${ }^{7,8}$ and by a $\mathrm{D}_{2} \mathrm{O}$-exchangeable ${ }^{1} \mathrm{H}$ NMR signal at $\delta 12.69$ ($\delta_{1-\text { он }}$). It is 1,6,7-trisubstituted, as exemplified by the ${ }^{1} \mathrm{H}$ NMR spectrum (DMSO-d ${ }_{6}$), which showed signals for three adjacent aryl protons, appearing as an AMX system (δ_{A} $6.81, \mathrm{dd}, \mathrm{H}-2 ; \delta_{\mathrm{M}} 7.09, \mathrm{H}-4, \mathrm{dd} ; \delta_{\mathrm{X}} 7.71, \mathrm{dd}, \mathrm{H}-3 ; \mathrm{J}_{\mathrm{Am}}=0.8$ $\mathrm{Hz}, \mathrm{J}_{\mathrm{Ax}}=8.2 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{mx}}=8.4 \mathrm{~Hz}$), and two aryl protons para to each other ($\delta 7.49, \mathrm{~s} ; \delta 7.62, \mathrm{t}, \mathrm{J}=1.3 \mathrm{~Hz}$). The other signals included an MeO singlet ($\delta 3.91$) and an oxygenated methylene doublet ($\delta 4.63$, J $=1.3 \mathrm{~Hz}$) which coupled benzylically to the aryl proton at $\delta 7.62$. This aryl proton was observed to couple to the C-9 carbonyl ($\delta 181.3$) in an HMBC spectrum. NOED experiments showed NOE between $\mathrm{H}-8(\delta 7.62)$ and $7-\mathrm{CH}_{2} \mathrm{OH}(\delta 4.63)$, and $\mathrm{H}-5(\delta 7.49)$ and MeO-6 (δ 3.91). Consequently, 4 was concluded to be 1-hydroxy-7-hydroxymethyl-6-methoxyxanthone.
Complete ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of $\mathbf{1 - 4}$ were assigned from NOED and 2D NMR techniques and are listed in the Experimental Section. To our knowledge, compounds 1-4 are new natural products. Compounds 1-3 were named drypetenones A, B, and C, respectively.

Nine known compounds were also isolated. They were amentoflavone, ${ }^{9,10}$ coniferaldehyde, ${ }^{11}$ sinapaldehyde, ${ }^{12}$ Iariciresinol, ${ }^{13,14}$ syringaresinol, ${ }^{15}$ the neolignans boehmenan ${ }^{16}$ and boehmenan $\mathrm{D}(5)$, friedelin, ${ }^{17}$ and β-amyrin, ${ }^{17}$ the latter two being from the 50% aqueous EtOH -insoluble fraction. They were identified by comparison of the spectral data with those reported. Boehmenan D (5) has been isolated recently from Ochroma Iagopus (Bombacaceae). ${ }^{16}$ Although the ${ }^{1} \mathrm{H}$ NMR spectrum of 5 was reported, the ${ }^{13} \mathrm{C}$ NMR spectrum was not. The ${ }^{13} \mathrm{C}$ NMR data for 5 are included in the present report as Supporting Information.

Experimental Section

General Experimental Procedures. Melting points were measured on a F isher-J ohns melting point apparatus and are uncorrected. IR spectra were recorded on a Perkin-EImer 1760-X infrared Fourier transform spectrophotometer (KBr). UV spectra were measured in MeOH on a Hitachi 150-20 spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AMX-400 FT spectrometer in $\mathrm{CDCl}_{3}\left(\delta_{H} 7.24, \delta_{C} 77.0\right)$ or DMSO- $\mathrm{d}_{6}\left(\delta_{H} 2.49, \delta_{C} 39.5\right.$), using Bruker's standard pulse
programs: in the HMQC and HMBC experiments, $\Delta=1 \mathrm{~s}$ and J = 140, 10 Hz , respectively, the correlation maps consisted of $512 \times 1 \mathrm{~K}$ data points per spectrum, each composed of 16-64 transients. MS were recorded on a J EOL J MX-HX 110 spectrometer. Centrifugal partition chromatography (CPC) was performed with a CPC-LLN instrument, Model-NMF, Sanki Engineering Limited, K yoto, J apan, using the upper and lower layers of sol vent system $\mathrm{A}, \mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}-\mathrm{PrOH}$ (10:10:6:1), as mobile and stationary phases, respectively. Silica gel for column chromatography was finer than 230 mesh unless otherwise specified.
Plant Material. The stems of D. littoralis for this study were collected from Kan-Din National Park, Taiwan, in September 1995. A voucher specimen (No. NTUPH 19950901) has been deposited in the School of Pharmacy, National Taiwan University.
Extraction and Isolation. The ground, dry stems (22.7 kg) were extracted with $95 \% \mathrm{EtOH}(60 \mathrm{~L} \times 4$). The ethanolic residue (386 g) was triturated successively with water ($1 \mathrm{~L} \times$ 2) and 50% aqueous EtOH to give an $\mathrm{H}_{2} \mathrm{O}$-sol uble fraction (A), a $50 \% \mathrm{EtOH}$-soluble fraction ($\mathrm{B}, 20 \mathrm{~g}$), and a residue (C, 92.7 g). The $50 \% \mathrm{EtOH}$-soluble fraction was chromatographed over Sephadex LH-20, eluted with MeOH, to give six fractions (IVI). Of these, fraction $V(7.9 \mathrm{mg})$ was found to be amentoflavone. ${ }^{9,10}$ Fraction II (7.34 g) was subsequently fractionated with CPC delivered by the solvent system A as indicated above to give five subfractions. Chromatography of subfraction 2 (931 mg) on silica gel (40 g), eluted with $\mathrm{MeOH}(0-20 \%)$ in CHCl_{3}, gave coniferaldehyde ${ }^{11}(15 \mathrm{mg})$ and sinapaldehyde ${ }^{12}(5 \mathrm{mg})$ and a fraction (24.9 mg) containing lariaresi nol ${ }^{13,14}(4.4 \mathrm{mg})$, which was purified via a Sephadex LH-20 column [8 g, MeOH-CHCl 3 (1:1)] and a preparative TLC plate [$1 \mathrm{~mm}, \mathrm{Me} \mathrm{CO}$-toluene (3:7)]. Chromatography of subfraction $4(1.60 \mathrm{~g})$ on silica gel (80 g), eluted with acetone ($0-20 \%$) in hexane, gave five subfractions. Subfraction 2 was further separated by a silica gel column (20 g), eluted with EtOAc-hexane (1:9), to give compounds $\mathbf{3}(9 \mathrm{mg}), \mathbf{1}(106 \mathrm{mg})$, and $\mathbf{2}(108 \mathrm{mg})$. Subfraction 3 (70 mg) was further separated by a silica gel column (230400 mesh, 6 g), eluted with EtOAc-hexane (1:3), to give syringaresinol ${ }^{15}$ (21 mg). Fraction III (872 mg) was subjected to two successive columns (silica gel for PTLC, 40 and 8 g), eluted with $\mathrm{Me}_{2} \mathrm{CO}$-toluene (1:9) and EtOAc-toluene (2:8), respectively, to afford compound $\mathbf{4}(2.3 \mathrm{mg})$, boehmenan ${ }^{16}$ (70 mg), and boehmenan $\mathrm{D}^{16}(5,12 \mathrm{mg})$. The known compounds were identified by comparison with reference compounds and literature values.

12-Hydroxy-11-methoxy-13-methylpodocarpa-1,5,8,11,-13-pentaene-3,7-dione (1): $\mathrm{R}_{\mathrm{f}} 0.63$ [(EtOAc-hexane (1:1)], $\mathrm{mp} 216-220^{\circ} \mathrm{C}$; $[\alpha]^{25} \mathrm{D}-130^{\circ}$ (c 0.5, MeOH); UV $\lambda_{\text {max }}(\log \epsilon)$ 271 (3.97), 319 (3.96) nm; ($\mathrm{MeOH}+\mathrm{NaOH}$) 255 (4.22), 397 (4.12) nm; IR $v_{\max } 3307,2978,2940,1689,1639,1603,1556$, 1483, 1463, 1429, 1381, 1360, 1333, 1304, 1265, 1202, 1165, 1130, 1093, 1052, 922, 897, 806, 792, 765, 713, $628 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.82(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-14), 7.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.2 \mathrm{~Hz}$, $\mathrm{H}-1), 6.47(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 6.12(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.2 \mathrm{~Hz}, \mathrm{H}-2), 3.97$ (3H, s, 11-OMe), 2.31 (3H, s, H-15), 1.70 (3H, s, H-20), 1.55 (3H, s, H-19), 1.38 (3H, s, H-18); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 201.1$ (s, C-3), 184.0 (s, C-7), 167.6 (s, C-5), 151.5 (d, C-1), 152.9 (s, C-12), 144.6 (s, C-11), 137.8 (s, C-9), 126.8 (d, C-2), 126.4 ($\mathrm{s}, \mathrm{C}-13$), 124.9 (d, C-14), 124.3 (d, C-6), 123.1 (s, C-8), 60.8 ($q, 11-0 M e$), 49.0 (s, C-4), 42.7 (s, C-10), 33.5 (q, C-20), 28.8 (q, C-18), 28.0 (q, C-19), 15.7 (q, C-15); HMBC data (CDCl_{3}) C-1 to H-20, C-3 to $\mathrm{H}-1, \mathrm{H}-18$ and $-19, \mathrm{C}-4$ to $\mathrm{H}-2,-6,-18$, and $-19, \mathrm{C}-5$ to $\mathrm{H}-18$, $-19,-20$, and $-1, \mathrm{C}-7$ to $\mathrm{H}-14, \mathrm{C}-8$ to $\mathrm{H}-6, \mathrm{C}-9$ to $\mathrm{H}-1,-14$, and -20, C-10 to H-1, $-2,-6$, and $-20, \mathrm{C}-11$ to 11-OMe, C-12 to H-14 and $-15, \mathrm{C}-13$ to $\mathrm{H}-15, \mathrm{C}-14$ to $\mathrm{H}-15, \mathrm{C}-15$ to $\mathrm{H}-14, \mathrm{C}-18$ to $\mathrm{H}-19, \mathrm{C}-19$ to $\mathrm{H}-18, \mathrm{C}-20$ to $\mathrm{H}-1$; EIMS (20 eV) m/z (rel int) [M] 312 (100), 297 (43), 269 (37), 254 (5), 218 (12), 203 (3); HREIMS m/z [M] 312.1353 (calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{4}, 312.1362$).
12-Hydroxy-11-methoxy-13-methylpodocarpa-5,8,11,-13-tetraene-3,7-dione (2): $\mathrm{R}_{\mathrm{f}} 0.48$ [(EtOAc-hexane (1:1)], $\mathrm{mp} 165-168{ }^{\circ} \mathrm{C}$; $[\alpha]^{25} \mathrm{D}-173^{\circ}$ (c $0.5, \mathrm{MeOH}$); IR $v_{\max } 3284$, 2982, 2939, 1692, 1646, 1600, 1556, 1463, 1427, 1386, 1362, $1328,1287,1260,1202,1157,1125,1101,1058,931,910,891$,

817, 775, 713, $679 \mathrm{~cm}^{-1}$; UV $\lambda_{\max }(\log \epsilon) 315$ (3.98); $\lambda_{\text {max }}$ ($\mathrm{MeOH}+\mathrm{NaOH}$) 244 (4.34), 398 (4.11) nm; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 7.85 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-14$), 6.42 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6$), 3.88 ($3 \mathrm{H}, \mathrm{s}, 11-\mathrm{OMe}$), 3.07 (1 H, ddd, J $=13.7,6.6,4.4 \mathrm{~Hz}, \mathrm{H}-1 \beta$), $2.70(1 \mathrm{H}, \mathrm{m})$ and 2.72 ($1 \mathrm{H}, \mathrm{m}$) (H-2's), $2.30(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-15), 1.94$ ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=13.7$, $9.6,9.6 \mathrm{~Hz}, \mathrm{H}-1 \alpha), 1.44(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-19), 1.42$ (3H, s, H-20), 1.38 (3H, s, H-18); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 213.3$ (s, C-3), 184.3 (s, C-7), 173.0 (s, C-5), 152.7 (s, C-12), 145.1 (s, C-11), 140.1 (s, C-9), 125.8 (s, C-13), 124.8 (d, C-14), 123.3 (d, C-6), 122.9 (s, C-8), 60.7 (q, 11-OM e), 49.6 (s, C-4), 40.6 (s, C-10), 33.1 (t, C-2), 29.7 ($q, C-18$), 28.5 ($\mathrm{t}, \mathrm{C}-1$), 26.5 ($\mathrm{q}, \mathrm{C}-19$), 22.4 ($q, \mathrm{C}-20$), 15.5 (q , $\mathrm{C}-15)$; HMBC data (CDCl_{3}) H-1's to C-2, C-3, C-5, C-9, C-10 and $\mathrm{C}-20, \mathrm{H}-2$'s to $\mathrm{C}-1, \mathrm{C}-3$ and $\mathrm{C}-10, \mathrm{H}-6$ to $\mathrm{C}-4, \mathrm{C}-5$ and $\mathrm{C}-10$, $\mathrm{H}-14$ to $\mathrm{C}-7, \mathrm{C}-9, \mathrm{C}-12$ and $\mathrm{C}-15, \mathrm{H}-15$ to $\mathrm{C}-12, \mathrm{C}-13$, and $\mathrm{C}-14$, $\mathrm{H}-18$ to $\mathrm{C}-3, \mathrm{C}-4, \mathrm{C}-5$ and $\mathrm{C}-19, \mathrm{H}-19$ to $\mathrm{C}-3, \mathrm{C}-4, \mathrm{C}-5$ and $\mathrm{C}-18$, $\mathrm{H}-20$ to $\mathrm{C}-1, \mathrm{C}-5, \mathrm{C}-9$ and $\mathrm{C}-10,11-\mathrm{OCH}_{3}$ to $\mathrm{C}-11$; NOESY data $\left(\mathrm{CDCl}_{3}\right) 11-\mathrm{OMe} \leftrightarrow \mathrm{H}-20 \leftrightarrow \mathrm{H}-1 \beta(3.08) \leftrightarrow \mathrm{H}-2 \prime \mathrm{~s} ; \mathrm{H}-2 \beta \leftrightarrow \mathrm{H}-19$; $\mathrm{H}-1 \alpha(1.91) \leftrightarrow \mathrm{H}-1 \beta \leftrightarrow 11-\mathrm{OMe}, \mathrm{H}-14 \leftrightarrow \mathrm{H}-15, \mathrm{H}-19 \leftrightarrow \mathrm{H}-6 \leftrightarrow$ $\mathrm{H}-18$; NOED data $\left(\mathrm{CDCl}_{3}\right) \mathrm{H}-18$ to $\mathrm{H}-1 \alpha$ (7.1\%), $\mathrm{H}-2 \alpha(4.6 \%)$, H-6 (16.4\%), H-19 (6.9\%), H-19 to H-2 ${ }^{2}$ (2.7\%), H-6 (12.2\%), H-18 ($\delta 1.38$) (4.2\%), H-20 (1.7\%), H-20 ($\delta 1.42$) to H-1 $\beta(\delta 3.07$) (4.8\%), H-2 β (5.1\%), 11-OM (8.2\%), H-19 ($\delta 1.44$) (3.0\%); EIMS (20 eV) m/z (rel int) [M] 314 (100), 299 (20), 271 (15), 258 (30), 243 (5), 231 (3); HREIMS m/z [M] 314.1516 (calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{4}, 314.1519$).

12-Hydroxy-6,11-dimethoxy-13-methylpodocarpa-1,5,8,-11,13-pentaene-3,7-dione (3): $\mathrm{R}_{\mathrm{f}} 0.43$ [(EtOAc-hexane (2: 3)], $\mathrm{mp} 182-185{ }^{\circ} \mathrm{C}$ (EtOAc-hexane); [$\left.\alpha\right]^{25} \mathrm{D}-115^{\circ}$ (c 0.5, $\mathrm{MeOH})$; UV $\lambda_{\text {max }}(\log \epsilon) 245(4.2), 313$ (3.98); ($\mathrm{MeOH}+\mathrm{NaOH}$) 211 (4.93), 248 (4.23), 393 (4.13) nm; IR $v_{\max } 3240,2977,2939$, 1715, 1650, 1590, 1556, 1469, 1384, 1349, 1243, 1204, 1154, $1050,933,896,696 \mathrm{~cm}^{-1} ; 1 \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.81(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-14)$, $7.54(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.2 \mathrm{~Hz}, \mathrm{H}-1), 6.19(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.2 \mathrm{~Hz}, \mathrm{H}-2)$, 3.95 ($3 \mathrm{H}, \mathrm{s}, 11-\mathrm{OMe}$), 3.87 (3H, s, 6-OMe), 2.31 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-15$), 1.66 (3H, s, H-19), 1.61 (3H , s, H-20), 1.50 (3H , s, H-18); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 202.6$ ($\mathrm{s}, \mathrm{C}-3$), 180.0 ($\mathrm{s}, \mathrm{C}-7$), 148.4 ($\mathrm{s}, \mathrm{C}-5$), 150.6 (d, C-1), 152.2 ($\mathrm{s}, \mathrm{C}-12$), 148.2 ($\mathrm{s}, \mathrm{C}-6$), 144.0 ($\mathrm{s}, \mathrm{C}-11$), 137.1 (s, C-9), 127.3 (d, C-2), 126.1 (s, C-13), 125.1 (d, C-14), 123.9 (s, C-8), 61.0 (q, 11-OMe), 59.6 ($q, 6-\mathrm{OMe}$), 49.2 ($\mathrm{s}, \mathrm{C}-4$), 42.2 (s, C-10), 34.1 (q, C-20), 28.0 ($\mathrm{q}, \mathrm{C}-18$), 22.2 (q, C-19), 15.5 (q, C-15); HMBC data $\mathrm{H}-1$ to $\mathrm{C}-3, \mathrm{C}-5, \mathrm{C}-9$, and $\mathrm{C}-10, \mathrm{H}-2$ to $\mathrm{C}-4$ and $\mathrm{C}-10, \mathrm{H}-14$ to $\mathrm{C}-7, \mathrm{C}-9$, and $\mathrm{C}-15, \mathrm{H}-15$ to $\mathrm{C}-12, \mathrm{C}-13$, and $\mathrm{C}-14, \mathrm{H}-18$ to $\mathrm{C}-3, \mathrm{C}-4, \mathrm{C}-5$ and $\mathrm{C}-19, \mathrm{H}-19$ to $\mathrm{C}-3, \mathrm{C}-4$, $\mathrm{C}-5$ and $\mathrm{C}-18, \mathrm{H}-20$ to $\mathrm{C}-1, \mathrm{C}-5, \mathrm{C}-9$ and $\mathrm{C}-10,6-\mathrm{OM}$ to $\mathrm{C}-6$, $11-\mathrm{OCH}_{3}$ to $\mathrm{C}-11$; NOED data 11-OM e to $\mathrm{H}-1$ (3.1\%) and $\mathrm{H}-20$ (4.7\%), 6-OMe to H-19 (1.9\%), H-20 to 11-OMe (3.6\%), H-18 to $\mathrm{H}-19$ (4.8\%) and 6-OMe (1.8\%), H-15 to H-14 (10.0\%), H-19 to H-18 (5.1\%) and 6-OMe (3.0\%); EIMS (20 eV) m/z (rel int) [M] 342 (100), 311 (37), 299 (16), 283 (21), 241 (43), 218 (5); HREIMS m/z [M] 342.1463 (calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{5}, 342.1468$).

1-Hydroxy-7-hydroxymethyl-6-methoxyxanthone (4): $\mathrm{R}_{\mathrm{f}} 0.62$ [(EtOAc-toluene (1:1)], mp $180-183^{\circ} \mathrm{C}$ (amorphous); UV $\lambda_{\max }(\log \epsilon) 235(4.00), 260(4.09), 378(3.48) ;(\mathrm{MeOH}+\mathrm{NaOH})$ $\lambda_{\text {max }}(\log \epsilon) 235(4.04), 262(4.02), 380(3.42) \mathrm{nm}$; IR $v_{\text {max }} 2490$, 1644, 1479, 1433, 1391, 1237, 1207, 1168, 1055, 809, 759, 717 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR (DMSO-d) see text; ${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$) δ 181.3 (s, C-9), 160.8 (s, C-1), 155.7 (s, C-4a), 152.8 (s, C-6), 150.8 (s, C-10a), 142.4 (s, C-7), 137.1 (d, C-3), 118.4 (s, C-8a), 115.5 (d, C-8), 109.8 (d, C-2), 108.0 ($\mathrm{d}, \mathrm{C}-9 \mathrm{a}$), 107.3 (d, C-4), 102.9 (d, C-5), 58.0 (t, C-7a), 55.9 ($q, 6-O M e$); HMBC (DMSOd_{6}) $\mathrm{C}-1$ to $\mathrm{H}-2,-3$ and $1-\mathrm{OH}, \mathrm{C}-2$ to $\mathrm{H}-4,1-\mathrm{OH}, \mathrm{C}-4$ to $\mathrm{H}-2$, $\mathrm{C}-4 \mathrm{a}$ to $\mathrm{H}-3, \mathrm{C}-6$ to $\mathrm{H}-5,6-\mathrm{OMe}, \mathrm{H}-8, \mathrm{C}-7$ to $\mathrm{H}-5,-8,7-\mathrm{CH}_{2}$, $\mathrm{C}-8$ to $7-\mathrm{CH}_{2}, \mathrm{C}-8 \mathrm{a}$ to $\mathrm{H}-5,-8, \mathrm{C}-9$ to $\mathrm{H}-8, \mathrm{C}-9 \mathrm{a}$ to $\mathrm{H}-4, \mathrm{C}-10 \mathrm{a}$ to H-5, -8, C-7a to H-8, -5; NOED data 6-OM e to H-5 (4.5\%), $7-\mathrm{CH}_{2} \mathrm{OH}$ to $8-\mathrm{H}(1.5 \%)$; EIMS (20 eV) m/z (rel int) [M] 272 (100), 243 (23), 229 (23), 211 (6), 201 (8), 155 (13), 127 (10); HREIMS m/z [M] 272.0674 (calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{5}, 272.0685$).

Preparation of 12-Hydroxy-11-methoxy-13-methyl-podocarpa-8,11,13-trien-3-one (6). A mixture of 3 (10.3 mg),

EtOAc (2 mL), and Pd-C ($10 \%, 5 \mathrm{mg}$) was catalytically hydrogenated under 1 atm of hydrogen at room temperature for 1 day. ${ }^{18}$ Usual workup and further separation on a silica gel column, eluted with $2 \% \mathrm{Me}_{2} \mathrm{CO}$ in toluene, yielded compound $6(8.9 \mathrm{mg}):[\alpha]^{25} \mathrm{D}-127.0^{\circ}$ (c 1.0, MeOH); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.62(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-14), 5.02(\mathrm{~s}, 12-\mathrm{OH}), 3.79(3 \mathrm{H}, \mathrm{s}, 11-$ OMe), $2.93(1 \mathrm{H}$, ddd, $\mathrm{J}=6.1,8.0,13.9 \mathrm{~Hz}, \mathrm{H}-1 \beta), 2.77(2 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-7$), 2.66 (1 H , ddd, J $=6.0,9.5,15.1 \mathrm{~Hz}, \mathrm{H}-2 \alpha$), 2.49 (1 H , ddd, J $=6.1,8.5,15.1 \mathrm{~Hz}, \mathrm{H}-2 \beta), 2.18(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-15), 1.98(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-1 \alpha), 1.97(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.1,12.3 \mathrm{~Hz}, \mathrm{H}-5), 1.73(1 \mathrm{H}, \mathrm{ddt}$, $\mathrm{J}=12.2,5.6,2.1 \mathrm{~Hz}, \mathrm{H}-6 \alpha), 1.59(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=6.0,12.2 \mathrm{~Hz}$, H-6ß), 1.25 (3H, s, H-20), 1.14 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-18$), 1.12 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-19$); NOED data (CDCl_{3}) $\mathrm{H}-20$ to $\mathrm{H}-1 \beta$ (4.4\%), $-2 \beta(2.3 \%),-19$ (5.7\%), $-6 \beta(5.7 \%)$, and $11-\mathrm{OCH}_{3}(3.3 \%), \mathrm{H}-18$ to $\mathrm{H}-2 \alpha$ (3.9\%), -5 (10.3\%), $-6 \alpha(5.0 \%),-6 \beta(-1.3 \%)$, and -19 (2.9\%), H-19 to H-2 β (1.1\%), -18 (2.5\%), -6β (3.7\%), and -20 (5.8\%); ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl}{ }_{3}$) $\delta 218.5$ (s, C-3), 146.4 (s, C-11), 145.9 (s, C-12), 137.1 ($\mathrm{s}, \mathrm{C}-9$), 127.7 ($\mathrm{s}, \mathrm{C}-8$), 126.6 ($\mathrm{d}, \mathrm{C}-14$), 123.7 ($\mathrm{s}, \mathrm{C}-13$), 60.7 ($\mathrm{q}, 11$-MeO), 52.1 (d, C-5), 47.3 (s, C-4), 38.3 (s, C-10), 36.6 (t, C-1), 34.3 (t, C-2), 31.5 (t, C-7), 28.2 ($\mathrm{q}, \mathrm{C}-18$), 22.2 ($\mathrm{q}, \mathrm{C}-20$), 20.6 (t, C-6), 20.5 (q, C-19), 15.2 (q, C-15); HMBC data (CDCl_{3}) C-1 to H-20, and -2 's, $\mathrm{C}-2$ to $\mathrm{H}-1 \beta, \mathrm{C}-3$ to $\mathrm{H}-18$ and $-19, \mathrm{C}-4$ to $\mathrm{H}-2 \beta,-18$, -19 , and $-5, \mathrm{C}-5$ to $\mathrm{H}-18,-19,-20$, and -1β, C-6 to $\mathrm{H}-7$'s, $\mathrm{C}-7$ to $\mathrm{H}-5,-6 \beta$, and $-14, \mathrm{C}-8$ to $\mathrm{H}-7$'s, $\mathrm{C}-9$ to $\mathrm{H}-7$'s, -20 , and $-14, \mathrm{C}-10$ to H-1's, -2 's, -5 , and $-20, \mathrm{C}-11$ to $11-\mathrm{OM}$ e and 12-OH, C-12 to $12-\mathrm{OH}, \mathrm{H}-14$ and $-15, \mathrm{C}-13$ to $\mathrm{H}-15, \mathrm{C}-14$ to H-15, C-15 to H-14, $\mathrm{C}-18$ to $\mathrm{H}-19$ and $-5, \mathrm{C}-19$ to $\mathrm{H}-18, \mathrm{C}-20$ to $\mathrm{H}-1$'s.

Acknowledgment. This work was supported by the National Science Council, Republic of China, under grant NSC86-2314-B002-072.

Supporting Information Available: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data and HMBC data of boehmenan $\mathrm{D}(\mathbf{5})$ measured in CDCl_{3}. This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

(1) Hsieh, C.-F. In Flora of Taiwan; Li, H.-L., Liu, T.-S., Koyama, T., Devol, C. E., Eds.; Epoch Publishing Co.: Taipei, 1977; Vol. III.; p 458.
(2) Chen, C.-H.; Huang, C.-F.; Lee, S. S.; Liu, K. C. S. C. Chin. Pharm. J. 1999, 51, 75-85.
(3) Chiou, J.-F.; Chen, L.-C.; Lee, S. S.; Chen Liu, K. C. S. Unpublished data.
(4) Carreiras, M. C.; Rodriguez, B.; de la Torre, M. C.; Perales, A.; Torres, M. R.; Savona, G.; Piozzi, F. Tetrahedron 1990, 46, 847-860.
(5) Itokawa, H.; Ichihara, Y.; Takeya, K.; Morita, H.; Motidome, M. Phytochemistry 1991, 30,4071-4073.
(6) Craveiro, A. A.; Silveira, E. R. Phytochemistry 1982, 21, 2571-2574, and references therein.
(7) Gunatilaka, A. A. L.; De Silva, A. M. Y. J asmin; Sotheeswaran, S. Phytochemistry 1982, 21, 1751-1753.
(8) Tosa, H.; I inuma, M.; Murakami, K.; Ito, T.; Tanaka, T.; Chelladurai, V.; Riswan, S. Phytochemistry 1997, 45, 133-136.
(9) Goh, S. H.;J antan, I.; Waterman, P. G.J . N at. Prod. 1992, 55, 14151420.
(10) Markham, K. R.; Franke, A.; M olloy, B. P. J.; Webby, R. F. Phytochemistry 1990, 29, 501-507.
(11) Diaz, J. G.; Goedken, V. L.; Herz, W. Phytochemistry 1992, 31, 597608.
(12) Wen, D.-X.; Chen, Z.-L. Phytochemistry 1996, 41, 657-660.
(13) Hanuman, J. B.; Mishra, A. K.; Sabata, B. J. Chem. Soc., Perkin Trans. 1 1986, 1181-1185.
(14) Chu, A.; Dinkova, A.; Davin, L. B.; Bedgar, D. L.; Lewis, N. G. J . Biol. Chem. 1993, 268, 27026-27033.
(15) Badawi, M. M.; Handa, S. S.; Kinghorn, A. D.; Cordell. G. A.; Farnsworth, N. R. J. Pharm. Sci. 1983, 72, 1285-1287.
(16) Paula, V. F.; Barbosa, L. C. A.; Howarth, O. W.; Demuner, A. J .; Cass, Q. B.; Vieira, I. J. C. Tetrahedron 1995, 51, 12453-12462.
(17) Mahato, S. B.; Kundu, A. P. Phytochemistry 1992, 31, 2199-2249. Mahato, S. B.; Kundu, A. P. Phytochemistry 1994, 37, 1517-1575, and references therein.
(18) Das, S.; Saha, A. K.; Mukherjee, D. Tetrahedron Lett. 1995, 36, 2315-2316.
NP0005964

[^0]: * To whom correspondence should be addressed. Tel: 886-2-23916127 Fax: 886-2-23919098. E-mail: shoeilee@ha.mc.ntu.edu.tw.

